

ANONYMITY IN QUANTUM NETWORK PROTOCOLS

Fit into QIA's bigger picture

- **Application domains**, User domains and use-cases ullet
- **Identity protection** •

A quantum network $N = \{1, 2, ..., n\}$

- The 'participants':
 - A sender: Alice A
 - Multiple *receivers:* Bobs B_i
- The 'non-participants'
 - Everyone else

The identity of participants remains "as unknown as it was"

- To the non-participants: weak anonymity ullet
- To everyone*: strong anonymity •
 - Alice chooses all identities
 - Variants \bullet

ANONYMOUS SECRET MESSAGING

Anonymous secret messaging

- **1.** Alice picks the Bobs
- **2.** Alice and the Bobs anonymously generate key k
- **3.** Alice encrypts her message $s \rightarrow c = s \oplus k$
- **4.** Alice anonymously broadcasts c
- **5.** Bobs decrypt $c \to c \oplus k = m \oplus k \oplus k = m$

GHZ states

$|0...0\rangle_N + |1...1\rangle_N$

- Measure in Z•
 - Correlated key •
- Measure in X_n
 - 'GHZ' on remaining parties
- Measure **all qubits** in X
 - The *parity* of all outcomes is fixed

$(|0...0\rangle_{N-1} \pm |1...1\rangle_{N-1}) \otimes |\pm\rangle_n$

(GHZ is stabilizer)

Anonymous secret messaging

1. Alice picks the Bobs

- **2.** Alice and the Bobs anonymously generate key k
- **3.** Alice encrypts her message $s \rightarrow c = s \oplus k$
- **4.** Alice anonymously broadcasts c
- **5.** Bobs decrypt $c \to c \oplus k = m \oplus k \oplus k = m$

BROADCASTING

Protocol for Alice to send message b

- **1.** Share GHZ state over entire network ${\cal N}$
- **2.** Alice applies Z_a if b = 1
- **3.** Everyone measures X_i , obtain m_i , announce
- **4.** Now $b = \bigoplus m_i$

$|0...0\rangle + (-1)^{0}|1...1\rangle$ $|0...0\rangle + (-1)^{b_{a}}|1...1\rangle$

KEY AGREEMENT

What we want

Verification

- Bobs select random X and Y measurements
- Alice completes a stabilizer element
- **Parity** is fixed

• **Repeating** gives exponentially small cheat probability

Contribution to QIA and future steps

Application domain

• Crystallise a Use case instead

Invitation to tomorrow morning

Links

Anonymous Tranmissions: lacksquare

- Christandl, Wehner (2005). Quantum Anonymous Transmissions. <u>https://doi.org/10.1007/11593447_12</u> •
- Anonymous conference key agreement: ullet
 - Hahn, de Jong, Pappa (2020). Anonymous Quantum Conference Key Agreement. https://doi.org/10.1103/PRXQuantum.1.020325 ۲
 - Grasselli, Murta et al. (2022). Secure anonymous conferencing in quantum networks. https://doi.org/10.1103/PRXQuantum.3.040306 •
 - de Jong, Hahn et al. (2020). Anonymous conference key agreement in linear quantum networks. https://arxiv.org/abs/2205.09169 •

Experimental work: \bullet

- Thalacker et al. (2021). Anonymous and secret communication in quantum networks. https://doi.org/10.1088/1367-2630/ac1808 ۲
- Rückle et al. (2022). Experimental anonymous conference key agreement using linear cluster states. https://arxiv.org/abs/2207.09487 ٠

THANK YOU!

Jarn de Jong, dejong@tu-berlin.de

(Bad) Protocol for Alice and Bobs to agree on key k

- **1.** Share GHZ state over entire network \boldsymbol{N}
- **2.** All non-participants j measure X_j
- **3.** All participants *j* measure Z_j , obtain k_j
- **4.** All participants agree on $k = k_i$

What happens when non-participants deviate?

$|0...0\rangle_N + (-1)^0 |1...1\rangle_N$ $|0...0\rangle_P + (-1)^\alpha |1...1\rangle_P$

Protocol for Alice and Bobs to agree on key \boldsymbol{k}

- **1.** Share GHZ state over entire network ${\cal N}$
- **2.** All non-participants j measure X_j
- 3. Network asks public random source for random \boldsymbol{b}
- 4a. (Key generation)

Participants measure Z and obtain key k

4b. (Verification)

Participants run verification round

Repeat ad inf.

(Supposedly) the state is: $(|0...0\rangle_P + (-1)^{\alpha} |1...1\rangle_P) \otimes |garb\rangle_{NP}$

- **1.** All Bobs pick random b_i , measure X_i or Y_i
- **2a.** All Bobs announce b_i and outcome o_i
- **2b.** Others announce random b_i and o_i
- **3.** Alice resets $b_a = \bigoplus_{Bobs} b_j$, measures X_j or Y_j
- **4.** Alice accepts iff $o_a \oplus \alpha = \bigoplus_{Bobs} o_i$

Important points

- **1.** Timing issues
- 2. Initial GHZ state is not checked
- 3. Dephasing of GHZ results in failed verification

