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Preliminaries

Pn = {1,−1,+i,−i} ⊗ {I, X, Y, Z}⊗n

I→
[
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]
X →
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Z →
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Stabilizer states

A state |ψ⟩ is a stabiliser state:

S = {P ∈ Pn|P |ψ⟩ = (+1) |ψ⟩} ⊂ Pn

S = ⟨g1,g2, . . . ,gn⟩

|ψ⟩⟨ψ| =
∑
σ∈S

σ
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Generator matrix

{g1,g2, . . . ,gn} → {−→g1,
−→g2 . . .

−→gn} → G =

[Z
X

]
∈ F2n×n

2
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Transformations of stabilizer states

|ψ⟩ → U |ψ⟩

Σσ∈Sσ → Σ(σ∈S)UσU†

Cn =
{
U ∈ U(2n)|UPU† ∈ Pn,∀P ∈ Pn

}

Cn = ⟨CZij,
√
Xi,

√
Zi⟩

Cln = ⟨
√
Xi,

√
Zi⟩
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Binary picture

G =

[Z
X

]
→ G′ = QG

QTPQ = P

?
∃C : ρ′ = CρC†

?
Q : G′=̂QG
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Local Clifford equivalence

QL =
[
A B
C D

]
, A,B,C,D all diagonal

[
Z ′ X ′ ]P [ A B

C D

] [Z
X

]
= 0

QTPQ = P
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Graphs

0 1

2

3
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Graphs

0 1

2

3

G = (V, E)
- nodes V
- edges E

Ni = {j ∈ V|(i, j) ∈ E}

Θ ∈ F|V|×|V|
2 : Θij = 1 ↔ (i, j) ∈ E

K[V] complete graph
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Graph states

G = (V, E) → |G⟩

V → |+⟩⊗V

(i, j) ∈ E→ CZi,j
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Graph states

|G⟩ = ∏
(i,j)∈E CZi,j |+⟩
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Graph states

|G⟩ is stabilizer

{gi} = {XiZNi}i
G =

[
Θ

I

]
Every stabiliser state is LC-equivalent to ‘a’ graph state
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Example

0 1

2

3

|N⟩ = CZ0,1CZ0,2CZ0,3CZ1,2 |+,+,+,+⟩

g1 = XZZZ
g2 = ZXZI
g3 = ZZXI
g4 = ZIIX
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Linear cluster states

|L⟩n =
∏
i

CZi,i+1 |+, . . . ,+⟩

|L⟩N
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GHZ states

|GHZ⟩n = |0, . . . ,0⟩+ |1, . . . , 1⟩

|GHZ⟩n=̂ |0,+, . . . ,+⟩+ |1,−, . . . ,−⟩

|GHZ⟩n
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Local complementation

G τi−→ G⊕K[G[Ni]]
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Local complementation
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Orbits
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Why?

Every stabilizer state is C1-equivalent to a graph state

|G⟩ C1
−→ |G′⟩ ↔ G′ ∈ Orb(G)

AΘ+ B+Θ′CΘ+Θ′D = 0
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Making the problem more interesting

From only Cl to

Operations from Ctwo−l

Limiting the classical communication
Local (Pauli) measurements

→ node deletions
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Extracting graph states
.... from graph states



Goal

Map |L⟩n to |GHZ⟩k

Using only local measurements and rotations
What k are possible?
What node selections are possible?
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Node selections?

|L⟩N

|GHZ⟩VG

|GHZ⟩VG′
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Islands
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Imbossibility results

No islands of size ≤ 3

2-islands only at the edge

×

×

✓
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Upper bound

|L⟩N

|GHZ⟩k

k ≤ n+3
2 (odd n)

k ≤ n+2
2 (even n)

→ k ≤ ⌊n+2
3 ⌋
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Maximal pattern

Measure every node in σx basis

Rotations are fairly straightforward1

1See https://github.com/hahnfrederik/
Extracting-maximal-entanglement-from-linear-cluster-states
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Other subsets

Only constraint is the 2-island
Shrink the linear cluster state

|L⟩N

|L⟩N−

|GHZ⟩

(Small caveat at the edges)

22 28



Other subsets

Only constraint is the 2-island

Shrink the linear cluster state
|L⟩N

|L⟩N−

|GHZ⟩

(Small caveat at the edges)

22 28



Other subsets

Only constraint is the 2-island

Shrink the linear cluster state

|L⟩N

|L⟩N−

|GHZ⟩

(Small caveat at the edges)

22 28



Other subsets

Only constraint is the 2-island

Shrink the linear cluster state
|L⟩N

|L⟩N−

|GHZ⟩

(Small caveat at the edges)

22 28



7-partite linear cluster state

1

2

3
4

5

6

7
|Li{1,...,7} |GHZi{•,...,•}
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2D-cluster state...
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2D-cluster state...
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...and beyond

Add structure
- Marginals of the states

(Less) classical communication
Two-local Cliffords
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Two-local Cliffords

0 1

2

3

0 1
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3

0 1

2

3

Ctwo−l
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GHZ extraction

27 28



Thank you

(But if you insist)
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