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Consider a network
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Are these three states ‘mappable’?

+ |0000⟩+ |0001⟩
+ |0010⟩ − |0011⟩
+ |0100⟩+ |0101⟩
− |0110⟩+ |0111⟩
+ |1000⟩ − |1001⟩
+ |1010⟩+ |1011⟩
− |1100⟩+ |1101⟩
+ |1110⟩+ |1111⟩

(1, 2) (2, 3)
(3, 4) (4, 1)

+ |0000⟩+ |0001⟩
+ |0010⟩ − |0011⟩
+ |0100⟩ − |0101⟩
− |0110⟩ − |0111⟩
+ |1000⟩+ |1001⟩
− |1010⟩+ |1011⟩
+ |1100⟩ − |1101⟩
− |1110⟩ − |1111⟩

(1, 3) (2, 3)
(3, 4) (2, 4)

+ |0000⟩+ |0001⟩
+ |0010⟩+ |0011⟩
+ |0100⟩+ |0101⟩
− |0110⟩ − |0111⟩
+ |1000⟩ − |1001⟩
+ |1010⟩ − |1011⟩
− |1100⟩+ |1101⟩
+ |1110⟩ − |1111⟩

(1, 2) (2, 3)
(1, 4)
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Preliminaries

Pauli group

Pn = {1,−1,+i ,−i} ⊗ {I ,X ,Y ,Z}⊗n

Typically we ‘forget’ about the phases
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Consider some states

|0 + 1⟩ |0000⟩+ |1111⟩ |0000⟩ − |1111⟩
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Stabiliser states

Shared +1 eigenspace

The set S ⊂ Pn of a stabiliser state |ψ⟩:

S = {P ∈ Pn|P |ψ⟩ = (+1) |ψ⟩}

The stabiliser

S is an Abelian subgroup of Pn of order 2n

Inclusion in stabiliser

|0000⟩+ |1111⟩
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Encode Paulis into bitvectors

Encoding of Paulis

I →
[
0

0

]
X →

[
0

1

]
Y →

[
1

1

]
Z →

[
1

0

]



Graph states

Stabiliser
states

Binary representation

Transforming
stabiliser
states

Graph states

Graphs and states

Transforming graphs

The end?

So what’s
next?

Other slides

10/39

Some nice properties

Multiplication

P1P2 ↔ −→p1 ⊕−→p2

Commutation

[P1,P2] = 0 ↔ −→p1TP−→p2 = ⟨p1, p2⟩s
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Generator matrix

Encoding of a set of generators

{P1,P2 . . .Pn} → {−→g1,−→g2 . . .−→gn} → G =

[
Z
X

]
∈ F2n×n

2
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Example of generator matrix
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Properties of the generator matrix

P
?
∈ S

Completeness of stabiliser?

Change of generators
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Clifford operations

Operations on stabiliser states

|ψ⟩ → U |ψ⟩

Clifford operators
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Local Cliffords

Single-qubit operations

LC-equivalent

|ψ⟩ = U |ϕ⟩ for some U ∈ CL
n

Generators
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Clifford operations in the binary picture

Linear mapping

Properties of Q
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Binary representation of local Cliffords

Block structure

Q =

[
A B
C D

]
, A,B,C,D all diagonal

Equivalence of stabiliser states

G1 and G2 locally equivalent?
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Graphs

Simple graphs

A graph G = (V ,E ) is a collection of
nodes V and edges E between them.

Neighbourhood

The neighbourhood of a node i :
Ni = {a ∈ V |(a, i) ∈ E}

Adjecency matrix

Θ ∈ F|V |×|V |
2 : Θij = 1 ↔ (i , j) ∈ E
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Graph states

Nodes

Each node represents a qubit in |+⟩ state

Edges

Each edge (i , j) represents a control-Z(i ,j)

The graph state
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Graph states are stabiliser states

Generators

{Gi} = {X iZNi}i

Generator matrix

G =

[
Θ

I

]

Stabiliser and graph states

Every stabiliser state is LC-equivalent
to ‘a’ graph state
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Local complementations
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Orbit
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And the associated graph states?

The action on the graph...

G
τi−→ G ′

...has an equivalent action on the graph
state

|G ⟩
Uτi

∈C l
n−−−−→
∣∣G ′〉
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LC-equivalence of graph states

Statement on graphs

G1 and G2 in each others orbit

Statement on graph states

|G1⟩ and |G2⟩ are LC-equivalent
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Are these three states ‘mappable’ LC-equivalent?

+ |0000⟩+ |0001⟩
+ |0010⟩ − |0011⟩
+ |0100⟩+ |0101⟩
− |0110⟩+ |0111⟩
+ |1000⟩ − |1001⟩
+ |1010⟩+ |1011⟩
− |1100⟩+ |1101⟩
+ |1110⟩+ |1111⟩

(1, 2) (2, 3)
(3, 4) (4, 1)

+ |0000⟩+ |0001⟩
+ |0010⟩ − |0011⟩
+ |0100⟩ − |0101⟩
− |0110⟩ − |0111⟩
+ |1000⟩+ |1001⟩
− |1010⟩+ |1011⟩
+ |1100⟩ − |1101⟩
− |1110⟩ − |1111⟩

(1, 3) (2, 3)
(3, 4) (2, 4)

+ |0000⟩+ |0001⟩
+ |0010⟩+ |0011⟩
+ |0100⟩+ |0101⟩
− |0110⟩ − |0111⟩
+ |1000⟩ − |1001⟩
+ |1010⟩ − |1011⟩
− |1100⟩+ |1101⟩
+ |1110⟩ − |1111⟩

(1, 2) (2, 3)
(1, 4)
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Are these three states ‘mappable’ LC-equivalent?

(1, 2) (2, 3)
(3, 4) (4, 1)

(1, 3) (2, 3)
(3, 4) (2, 4)

(1, 2) (2, 3)
(1, 4)
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Checking orbits

And the more general case?

A. Bouchet, An efficient algorithm to recognize locally equivalent graphs,
Combinatorics 11 (1991)
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The end?
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Semi-local graph state equivalence
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Other tools

Measurements on graph states

(Pauli) measurement fit nicely

The graph state basis

A complete basis of different graph states

Stabiliser codes

Non-complete generator sets
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Why LC equivalence?

The LU-LC conjecture

LU - LC equivalence

SLOCC

SLOCC is equivalent to LU
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Each stabiliser state is LC-equivalent to a graph state

G =

[
Z

X

]
L.C .−−→ G =

[
Z ′

X ′

]
C .O.B.−−−−→

[
Z ′X ′−1

I

]
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Writing down the stabiliser state

Either the ket state

|ψ⟩ =
∏
gi

I + gi
2

∣∣∣−→0 〉

Or the density matrix

ρ =
∏
gi

I + gi
2

=
1

2n

∑
S∈S

S
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Degenerate generator matrices

Equivalent statements

The generator matrix G is not full rank

The associated eigenspace is of higher dimension

The ‘generators’ are linearily dependent

A stabiliser code

Generator matrix with rank k < n specifies a 2k -dimensional subspace

Errors

Any operator that doesn’t commute with at least one generator maps the entire
subspace to an orthogonal space.
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