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Abstract

ACKA aims to obtain a secret and secure key between a subset of parties in a network, while keeping their identity hidden. In
comparison to earlier work where full-network multipartite entanglement is necessary, here we assume a nearest-neighbour line
architecture where only bi-partite quantum links exist, and provide a protocol for 3 anonymous parties to create key; we provide

full finite-key analysis and simulations for various noise levels.

Anonymous Conference Key Agreement

The goal of conference key agreement1 (CKA) is to generate a secret key between multiple parties (the participants) within a larger network. Additionally, this can be performed as anonymous CKA, where the identities of
the participants keeps hidden from the rest of the network (the non-participants). ACKA has been proposed with both bipartite2 and multipartite entangled quantum resources2,3 distributed over a fully connected network.
Here, we follow a more realistic approach where we consider a network of nodes {Ni} in a nearest-neighbour linear configuration, where as an initial resource every node shares an EPR pair (i. e. 1√

2
(|00⟩+ |11⟩)) with their

neighbours. After running the protocol, three parties sitting anywhere in the linear network – Alice (Na), Bob (Nb) and Charlie (Nc) – obtain a secret and secure key while not divulging their identity. During the protocol,
three linear cluster states are created from the initial resources; subsequently, a GHZ = 1√

3
(|000⟩ + |111⟩) state is extracted between the three participants. This state is either verified by them, or is used for key generation.

During classical post-processing both error correction is performed to obtain a perfectly correlated and secret key. Full finite-key analysis is given, which is largely based on previous tools4 but includes adaptations to keep
the identity of the participants hidden. We provide the finite key rate as a function of the total number of network uses and provide simulations for a multitude of noise rates within the network.
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Graphical representation of the protocol, which exist of two steps plus post-processing. During the first step, almost all parties merge their qubits together to create three
linear cluster states. The second step involves all non-participants measure their qubits under an identity-agnostic basis pattern, so that the participants obtain a state
LC-equivalent to the GHZ state. Subsequently, the participants correct their state and perform either Verification of the state or KeyGeneration to obtain raw key.

Finally, the participants perform anonymity-sustaining post-processing, including error-correction and privacy-amplification.

1. State preparation

In the first subprotocol, all nodes {Ni} except for Na and Nc perform
Bell state projections to create three linear cluster states from the initial
Bell pairs.
All previously mentioned nodes Ni perform:
•Receive correction bit oi−1 and apply Z on top qubit conditionally

• Perform CZ between two qubits, measure top qubit in σx basis and
record outcome oi

• Send oi to next node
The other nodes perform steps to hide their identity.

2. GHZ extraction

In the second subprotocol, the non-
participants {Ni} \ {Na, Nb, Nc} mea-
sure their leftover qubits in an alter-
nating σx-σy pattern. When all mea-
surements are finished, everyone an-
nounces their outcome; the participants
announce random bits to hide their iden-
tity. The resulting state for the partici-
pants is now LC-equivalent to the GHZ
state.

3. Measurements and post-processing

In the third subprotocol, the participants use some pre-shared key to
coordinate their measurements in either the σz-basis for KeyGeneration
or the σx-basis for Verification; first, they rotate their qubits under
the necessary corrections so that they obtain the proper state. The
previous two protocols are repeated L times, where k << L rounds
are for verification and L− k for keygeneration. If the fraction of faulty
verification rounds doesn’t exceed a pre-determinedQtol, the participants
perform error-correction and privacy amplification. To keep their identity
hidden, all communication is OTP-encrypted using a pre-shared key.
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