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Graph states
A graph is a collection of nodes V and edges E ✓ V 2 between

them; we say n := |V |.

We now associate a qubit in the |+i state with every node of
G. The graphstate |Gi is the unique eigenstate of the n

operators

{gi = Xi
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j2Ni

Zj} 8i 2 V,

i.e. an X operator on qubit i and a Z operator on every node
connected to i. These n operators form a generating set for a

stabilizer S, and thus any graph state is also a stabiliser
state; therefore
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Local operations
Local unitaries are tensorproducts of 1-qubit unitaries Ui:

If two graph states are L.U. equivalent, we write

|G1i
L.U.
= |G2i.

Entanglement classes
For a given graphstate |Gi, its (L.U.)-orbit is the collection

of all states LU -equivalent to |Gi.

In the classification of entanglement, states that are in

each others orbit or equal up to a permutation of the qubits

are grouped together in disjoint entanglement classes.

For 2-qubit states there are two: separable, and the Bell

state. For 3-qubit states there are two more: the GHZ- and

W states. In general, there are exponentially many.

We focus on entanglement classes containing graph states,

like the GHZ state.

Classification of graph state orbits
by their marginal structure

There are two 3-body marginals with rank 2

Can you find them both?

Let M ⇢ V be any subset of the nodes of V and
M? = V \M . The marginal on M is the reduced state

⇢M = trM?
⇥
|GihG|

⇤

The rank of a marginal is invariant under local unitary

operations. If |G1i
L.U.
= |G2i, then

rank (⇢1,M ) = rank (⇢2,M )

We call a marginal non-trivial if rank (⇢M ) < 2|M |.

Non-trivial Paulis are traceless; we collect the elements
without support only in M to get a set SM . Then

⇢M / trM?
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SM is an Abelian subgroup of Sand thus forms a stabilizer
code; ⇢M is exactly the maximally mixed state in its

codespace.

1. Marginal states

There thus is a 1 : 1 correspondence:

rank (⇢M ) = 2|M | � |SM | = 2|M |�nM ,

where nM := log(SM ); it can be computed as the nullity
of a submatrix of �, the adjacency matrix.

Any � 2 SM uniquely corresponds to a subset of M
that has an even number of edges to all nodes in M?.
This allows us to calculate |SM | by looking at a graph

and checking all subsets of M .

For the highlighted marginals:
M Surving subsets |SM | rank (⇢M )

{2, 3} {}, {2, 3} 2 2
{5, 6} {}, {6} 2 2
{0, 1, 7} {}, {0, 1, 7} 2 4
{4, 7} {} 1 4

2. Using the graph

We now study how the signatures perform in discerning
the graph state entanglement classes of size n. For a
given k, we calculate the ratio of unique signatures,
i.e. the total number of unique signatures divided by
the total number of unique classes for a given n.

We find the following ratios:

n t2 t3 t4 t5 t6
5 1.00 1.00 1.00 � �
6 0.73 1.00 1.00 1.00 �
7 0.46 1.00 1.00 1.00 1.00
8 0.19 0.89 1.00 1.00 1.00
9 0.06 0.73 0.998 0.998 0.998
10 0.01 0.37 0.988 0.999 0.999

To inventarize all ranks of marginals of a fixed size k, we
introduce a k-dimensional tensor TG

k with length n in

every dimension for every graph state |Gi. For every
index-as-a-vector u of Tk, let M(u) ⇢ V be the set of its

unique elements. TG
k is defined by

TG
k (u) = rank

�
⇢M(u)

�

This tensor is constant for L.U.-orbits, but not for
permutations; we derive a signature:

1. Compute the matrix K = sum(. . . (sum| {z }
k�2 times

(Tk) . . . )⇤

2. Compute the eigenvalues �i of K; these are permu-

tation invariant. Discard any �i = 0

3. Define tk =
Q

�i: the (k-th) signature of the entan-

glement class

⇤
Here, sum means a contraction over a dimension.
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