Classification of graph state orbits by their marginal structure

1. Marginal states

Let $M \subset V$ be any subset of the nodes of V and $M^{\perp} = V \setminus M$. The marginal on M is the reduced state

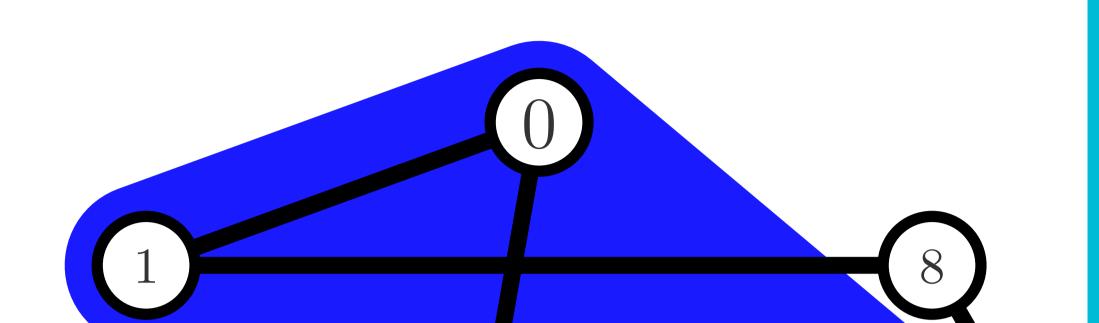
 $\rho_M = \operatorname{tr}_{M^{\perp}} \left[\left| G \right\rangle \! \left\langle G \right| \right]$

The *rank* of a marginal is invariant under local unitary operations. If $|G_1\rangle \stackrel{\text{L.U.}}{=} |G_2\rangle$, then

 $\operatorname{rank}(\rho_{1,M}) = \operatorname{rank}(\rho_{2,M})$

We call a marginal **non-trivial** if rank $(\rho_M) < 2^{|M|}$.

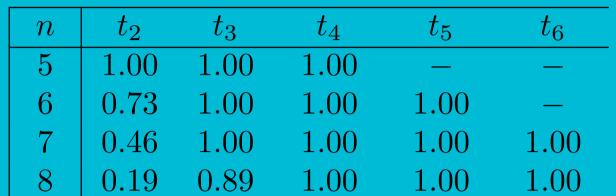
Non-trivial Paulis are traceless; we collect the elements without support only in M to get a set \mathcal{S}_M . Then



4. Classification

We now study how the signatures perform in discerning the graph state entanglement classes of size n. For a given k, we calculate the ratio of unique signatures, i.e. the total number of unique signatures divided by the total number of unique classes for a given n.

We find the following ratios:



 $\rho_M \propto \operatorname{tr}_{M^{\perp}} \left[\sum_{\sigma \in \mathcal{S}} \sigma \right] \propto \sum_{\mathcal{S}_M} \sigma$

 \mathcal{S}_M is an Abelian subgroup of \mathcal{S} and thus forms a stabilizer code; ρ_M is exactly the maximally mixed state in its codespace.

2. Using the graph

There thus is a 1 : 1 correspondence:

3

 $\operatorname{rank}(\rho_M) = 2^{|M|} - |\mathcal{S}_M| = 2^{|M| - n_M},$

where $n_M := \log(\mathcal{S}_M)$; it can be computed as the nullity of a submatrix of Γ , the adjacency matrix.

Any $\sigma \in \mathcal{S}_M$ uniquely corresponds to a subset of M that has an **even number** of edges to all nodes in M^{\perp} . This allows us to calculate $|\mathcal{S}_M|$ by looking at a graph and checking all subsets of M.

> For the highlighted marginals: Surving subsets $|\mathcal{S}_M| = \operatorname{rank}(\rho_M)$

0.190.891.001.000.060.730.9980.9989 0.998 $0.37 \quad 0.988$ 0.999 0.999 10 0.01

6

3. Smart bookkeeping

To inventarize all ranks of marginals of a fixed size k, we introduce a k-dimensional tensor T_k^G with length n in every dimension for every graph state $|G\rangle$. For every index-as-a-vector **u** of T_k , let $M(\mathbf{u}) \subset V$ be the set of its unique elements. T_k^G is defined by

$T_k^G(\mathbf{u}) = \operatorname{rank}\left(\rho_{M(\mathbf{u})}\right)$

This tensor is constant for L.U.-orbits, but not for permutations; we derive a *signature*:

1. Compute the matrix $K = \operatorname{sum}(\ldots(\operatorname{sum}(T_k)\ldots)^*)$ k-2 times

$\{2,3\}$	$\{\}, \{2, 3\}$	2	2
$\{5, 6\}$	$\{\}, \{6\}$	2	2
$\{0, 1, 7\}$	$\{\}, \{0, 1, 7\}$	2	4
$\{4,7\}$	{}	1	4

- 2. Compute the eigenvalues λ_i of K; these are permutation invariant. Discard any $\lambda_i = 0$
- 3. Define $t_k = \prod \lambda_i$: the (k-th) signature of the entanglement class

*Here, *sum* means a contraction over a dimension.

There are two 3-body marginals with rank 2 Can you find them both?

Theory, background info & introductions

Local operations

Entanglement classes

A graph is a collection of *nodes* V and *edges* $E \subseteq V^2$ between them; we say n := |V|.

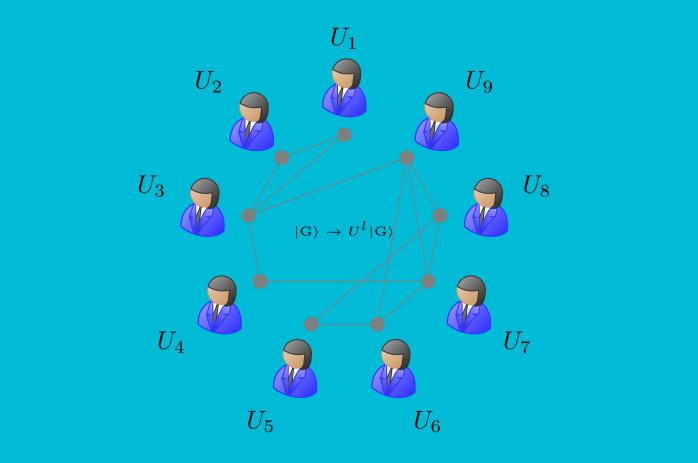
We now associate a qubit in the $|+\rangle$ state with every node of G. The graphstate $|G\rangle$ is the unique eigenstate of the n operators

$$\{g_i = X_i \bigotimes_{j \in N_i} Z_j\} \quad \forall i \in V$$

i.e. an X operator on qubit i and a Z operator on every node connected to i. These n operators form a generating set for a stabilizer \mathcal{S} , and thus any graph state is also a stabiliser state; therefore

$$|G\rangle\!\langle G|\propto \sum_{\mathcal{S}} G$$

Local unitaries are tensorproducts of 1-qubit unitaries U_i :



If two graph states are L.U. equivalent, we write $|G_1\rangle \stackrel{L.U.}{=} |G_2\rangle.$

For a given graphstate $|G\rangle$, its **(L.U.)-orbit** is the collection of all states LU-equivalent to $|G\rangle$.

In the **classification of entanglement**, states that are in each others orbit or equal up to a permutation of the qubits are grouped together in disjoint entanglement classes.

For 2-qubit states there are two: separable, and the Bell state. For 3-qubit states there are two more: the GHZ- and W states. In general, there are exponentially many.

We focus on entanglement classes containing graph states, like the GHZ state.

